enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]

  3. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    This algorithm is part of Vincent and Soille's watershed segmentation algorithm, [11] other implementations also exist. [ 12 ] In order to do that a linked list is formed that will keep the indexes of the pixels that are connected to each other, steps (2) and (3) below.

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Wikipedia-based Image Text Dataset 37.5 million image-text examples with 11.5 million unique images across 108 Wikipedia languages. 11,500,000 image, caption Pretraining, image captioning 2021 [7] Srinivasan e al, Google Research Visual Genome Images and their description 108,000 images, text Image captioning 2016 [8] R. Krishna et al.

  5. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  6. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...

  7. Insight Segmentation and Registration Toolkit - Wikipedia

    en.wikipedia.org/wiki/Insight_Segmentation_and...

    ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...

  8. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  9. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    In 2017, Saglam and Baykan used Prim's sequential representation of minimum spanning tree and proposed a new cutting criterion for image segmentation. [7] They construct the MST with Prim's MST algorithm using the Fibonacci Heap data structure. The method achieves an important success on the test images in fast execution time.