Search results
Results from the WOW.Com Content Network
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras:
The Bentley–Ottmann algorithm processes a sequence of + events, where denotes the number of input line segments and denotes the number of crossings. Each event is processed by a constant number of operations in the binary search tree and the event queue, and (because it contains only segment endpoints and crossings between adjacent segments ...
If the winding number is non-zero, the point lies inside the polygon. This algorithm is sometimes also known as the nonzero-rule algorithm. To check if a given point lies inside or outside a polygon: Draw a horizontal line to the right of each point and extend it to infinity. Count the number of times the line intersects with polygon edges.
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.
The intersection number can also be found in polynomial time for graphs whose maximum degree is five, but is NP-hard for graphs of maximum degree six. [38] [39] On planar graphs, computing the intersection number exactly remains NP-hard, but it has a polynomial-time approximation scheme based on Baker's technique. [21]
If the dog still manages to jump, the guests should be ready to immediately turn their backs and count for 10 seconds. Afterward, they can turn around and the dog can be cued to sit and rewarded ...
The number of characters including both dots and vertical lines used in this notation is 18 + 4 − 1. The number of vertical lines is 4 − 1. The number of vertical lines is 4 − 1. The number of multisets of cardinality 18 is then the number of ways to arrange the 4 − 1 vertical lines among the 18 + 4 − 1 characters, and is thus the ...