enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras:

  4. Intersection number (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_number_(graph...

    The intersection number can also be found in polynomial time for graphs whose maximum degree is five, but is NP-hard for graphs of maximum degree six. [38] [39] On planar graphs, computing the intersection number exactly remains NP-hard, but it has a polynomial-time approximation scheme based on Baker's technique. [21]

  5. Bentley–Ottmann algorithm - Wikipedia

    en.wikipedia.org/wiki/Bentley–Ottmann_algorithm

    The Bentley–Ottmann algorithm processes a sequence of + events, where denotes the number of input line segments and denotes the number of crossings. Each event is processed by a constant number of operations in the binary search tree and the event queue, and (because it contains only segment endpoints and crossings between adjacent segments ...

  6. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  7. Point in polygon - Wikipedia

    en.wikipedia.org/wiki/Point_in_polygon

    If the winding number is non-zero, the point lies inside the polygon. This algorithm is sometimes also known as the nonzero-rule algorithm. To check if a given point lies inside or outside a polygon: Draw a horizontal line to the right of each point and extend it to infinity. Count the number of times the line intersects with polygon edges.

  8. Line clipping - Wikipedia

    en.wikipedia.org/wiki/Line_clipping

    It can be used for line or line-segment clipping against a rectangular window, as well as against a convex polygon. The algorithm is based on classifying a vertex of the clipping window against a half-space given by a line p: ax + by + c = 0. The result of the classification determines the edges intersected by the line p. The algorithm is ...

  9. Bloom filter - Wikipedia

    en.wikipedia.org/wiki/Bloom_filter

    Bloom filters are a way of compactly representing a set of items. It is common to try to compute the size of the intersection or union between two sets. Bloom filters can be used to approximate the size of the intersection and union of two sets. For two Bloom filters of length m, their counts, respectively can be estimated as