enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...

  3. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    The generating function of the Bernoulli polynomials is given by: = = ()! These polynomials are given in terms of the Hurwitz zeta function: (,) = = (+)by (,) = for .Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]

  4. Master theorem - Wikipedia

    en.wikipedia.org/wiki/Master_theorem

    Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and linear algebra; Glasser's master theorem in integral calculus

  5. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.

  6. Akra–Bazzi method - Wikipedia

    en.wikipedia.org/wiki/Akra–Bazzi_method

    In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (⁡). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...

  8. Experimental mathematics - Wikipedia

    en.wikipedia.org/wiki/Experimental_mathematics

    As expressed by Paul Halmos: "Mathematics is not a deductive science—that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. You want to find out what the facts are, and what you do is in that respect similar to what a ...

  9. Merge sort - Wikipedia

    en.wikipedia.org/wiki/Merge_sort

    The closed form follows from the master theorem for divide-and-conquer recurrences. The number of comparisons made by merge sort in the worst case is given by the sorting numbers. These numbers are equal to or slightly smaller than (n ⌈lg n⌉ − 2 ⌈lg n⌉ + 1), which is between (n lg n − n + 1) and (n lg n + n + O(lg n)). [6]