enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...

  3. Master theorem - Wikipedia

    en.wikipedia.org/wiki/Master_theorem

    Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and linear algebra; Glasser's master theorem in integral calculus

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Other examples include divide-and-conquer algorithms such as Quicksort, and functions such as the Ackermann function. All of these algorithms can be implemented iteratively with the help of an explicit stack , but the programmer effort involved in managing the stack, and the complexity of the resulting program, arguably outweigh any advantages ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)

  6. Akra–Bazzi method - Wikipedia

    en.wikipedia.org/wiki/Akra–Bazzi_method

    In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.

  7. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    The generating function of the Bernoulli polynomials is given by: = = ()! These polynomials are given in terms of the Hurwitz zeta function: (,) = = (+)by (,) = for .Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (⁡). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.