Ads
related to: geometry generalized circle
Search results
Results from the WOW.Com Content Network
In geometry, a generalized circle, sometimes called a cline or circline, [1] is a straight line or a circle, the curves of constant curvature in the Euclidean plane. The natural setting for generalized circles is the extended plane, a plane along with one point at infinity through which every straight line is considered to pass.
In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection are perpendicular (meet at a right angle). A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles , for instance in inversive geometry , then an ...
In taxicab geometry, p = 1. Taxicab circles are squares with sides oriented at a 45° angle to the coordinate axes. While each side would have length using a Euclidean metric, where r is the circle's radius, its length in taxicab geometry is 2r. Thus, a circle's circumference is 8r.
In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey. Formulation of the theorem [ edit ]
a trivector: a generalized circle; a 4-vector: a generalized sphere; etc. These each may split into three cases according to whether A 2 is positive, zero or negative, corresponding (in reversed order in some cases) to the object as listed, a degenerate case of a single point, or no points (where the nonzero solutions of X ∧ A exclude null ...
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
More recently the mathematical structure of inversive geometry has been interpreted as an incidence structure where the generalized circles are called "blocks": In incidence geometry, any affine plane together with a single point at infinity forms a Möbius plane, also known as an inversive plane. The point at infinity is added to all the lines.
Ads
related to: geometry generalized circle