Ad
related to: conditional probability example of solution
Search results
Results from the WOW.Com Content Network
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem; among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]
Independently of Bayes, Pierre-Simon Laplace used conditional probability to formulate the relation of an updated posterior probability from a prior probability, given evidence. He reproduced and extended Bayes's results in 1774, apparently unaware of Bayes's work, in 1774, and summarized his results in Théorie analytique des probabilités (1812).
For example, consider the task with coin flipping, but extended to n flips for large n. In the ideal case, given a partial state (a node in the tree), the conditional probability of failure (the label on the node) can be efficiently and exactly computed. (The example above is like this.)
Each scenario has a 1 / 6 probability. The original three prisoners problem can be seen in this light: The warden in that problem still has these six cases, each with a 1 / 6 probability of occurring. However, the warden in the original case cannot reveal the fate of a pardoned prisoner.
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
In filtering theory the Kushner equation (after Harold Kushner) is an equation for the conditional probability density of the state of a stochastic non-linear dynamical system, given noisy measurements of the state. [1] It therefore provides the solution of the nonlinear filtering problem in estimation theory.
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
Ad
related to: conditional probability example of solution