enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    To enable handling long data sequences, Mamba incorporates the Structured State Space sequence model (S4). [2] S4 can effectively and efficiently model long dependencies by combining continuous-time, recurrent, and convolutional models. These enable it to handle irregularly sampled data, unbounded context, and remain computationally efficient ...

  3. Time delay neural network - Wikipedia

    en.wikipedia.org/wiki/Time_delay_neural_network

    This models the units' temporal pattern/trajectory. For two-dimensional signals (e.g. time-frequency patterns or images), a 2-D context window is observed at each layer. Higher layers have inputs from wider context windows than lower layers and thus generally model coarser levels of abstraction.

  4. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    They match, so G is appended to the upper left sequence, LCS(R 0, C 1), which is (ε), giving (εG), which is (G). For LCS(R 1, C 3), G and C do not match. The sequence above is empty; the one to the left contains one element, G. Selecting the longest of these, LCS(R 1, C 3) is (G). The arrow points to the left, since that is the longest of the ...

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  6. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    A key breakthrough was LSTM (1995), [note 1] a RNN which used various innovations to overcome the vanishing gradient problem, allowing efficient learning of long-sequence modelling. One key innovation was the use of an attention mechanism which used neurons that multiply the outputs of other neurons, so-called multiplicative units . [ 11 ]

  7. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The effect of memory-based learning for the recognition of sequences can also be implemented by a more biological-based model which uses the silencing mechanism exhibited in neurons with a relatively high frequency spiking activity.

  9. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...