enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:

  3. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...

  4. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    Let x 1 and x 2 be the vector positions of the two bodies, and m 1 and m 2 be their masses. The goal is to determine the trajectories x 1 (t) and x 2 (t) for all times t, given the initial positions x 1 (t = 0) and x 2 (t = 0) and the initial velocities v 1 (t = 0) and v 2 (t = 0). When applied to the two masses, Newton's second law states that

  5. Parabola of safety - Wikipedia

    en.wikipedia.org/wiki/Parabola_of_safety

    The paraboloid of revolution obtained by rotating the safety parabola around the vertical axis is the boundary of the safety zone, consisting of all points that cannot be hit by a projectile shot from the given point with the given speed.

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun

  7. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Similarly, the separated equations for the Laplace equation can be obtained by setting = in the above. Each of the separated equations can be cast in the form of the Baer equation . Direct solution of the equations is difficult, however, in part because the separation constants α 2 {\displaystyle \alpha _{2}} and α 3 {\displaystyle \alpha _{3 ...

  8. Parabolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_coordinates

    Coordinate surfaces of the three-dimensional parabolic coordinates. The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).

  9. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    The equation of motion for the radius of a particle of mass moving in a central potential is given by motion equations m d 2 r d t 2 − m r ω 2 = m d 2 r d t 2 − L 2 m r 3 = − d V d r , {\displaystyle m{\frac {d^{2}r}{dt^{2}}}-mr\omega ^{2}=m{\frac {d^{2}r}{dt^{2}}}-{\frac {L^{2}}{mr^{3}}}=-{\frac {dV}{dr}},}