Search results
Results from the WOW.Com Content Network
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization , in which an optimal value from a continuous function must be found.
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which optimal arguments from a
Continuous optimization is a branch of optimization in applied mathematics. [ 1 ] As opposed to discrete optimization , the variables used in the objective function are required to be continuous variables —that is, to be chosen from a set of real values between which there are no gaps (values from intervals of the real line ).
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
Hill climbing attempts to maximize (or minimize) a target function (), where is a vector of continuous and/or discrete values. At each iteration, hill climbing will adjust a single element in x {\displaystyle \mathbf {x} } and determine whether the change improves the value of f ( x ) {\displaystyle f(\mathbf {x} )} .
A continuous extension of is a continuous function : [,], that matches ... there are several other natural optimization problems related to submodular functions.
A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from above. Using such a function, a new optimization problem is formulated, viz. minimize f(x) + μ g(x) where μ > 0 is a free parameter. This problem is not equivalent to the original, but as μ approaches zero, it becomes an ever-better ...
Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...