enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...

  3. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.

  4. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    The four equations we use today appeared separately in Maxwell's 1861 paper, On Physical Lines of Force: Equation (56) in Maxwell's 1861 paper is Gauss's law for magnetism, ∇ • B = 0. Equation (112) is Ampère's circuital law, with Maxwell's addition of displacement current.

  5. Ampère - Wikipedia

    en.wikipedia.org/wiki/Ampère

    Ampère's force law, the force of attraction or repulsion between two current-carrying wires; Monge–Ampère equation, a type of nonlinear second order partial differential equation; AMPERS, the Association of Minnesota Public Educational Radio Stations; All pages with titles beginning with Ampère; All pages with titles beginning with Ampere

  6. Index of electrical engineering articles - Wikipedia

    en.wikipedia.org/wiki/Index_of_electrical...

    Lorentz force law – Loss power – Lossless data compression – Lossy data compression – Loudspeaker – Low-pass filter – LTI system theory – Lumen (unit) – Lumped parameters – Lyapunov stability – Lynch motor –

  7. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    Another of Heaviside's four equations is an amalgamation of Maxwell's law of total currents (equation "A") with Ampère's circuital law (equation "C"). This amalgamation, which Maxwell himself had actually originally made at equation (112) in "On Physical Lines of Force", is the one that modifies Ampère's Circuital Law to include Maxwell's ...

  8. André-Marie Ampère - Wikipedia

    en.wikipedia.org/wiki/André-Marie_Ampère

    André-Marie Ampère (UK: / ˈ æ m p ɛər /, US: / ˈ æ m p ɪər /; [1] French: [ɑ̃dʁe maʁi ɑ̃pɛʁ]; 20 January 1775 – 10 June 1836) [2] was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics.

  9. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]