Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Kron reduction is a useful tool to eliminate unused nodes in a Y-parameter matrix. [2] [3] For example, three linear elements linked in series with a port at each end may be easily modeled as a 4X4 nodal admittance matrix of Y-parameters, but only the two port nodes normally need to be considered for modeling and simulation.
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.
The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.
Thus the name Gaussian elimination is only convenient abbreviation of a complex history. Banachiewicz [1] was the first to consider elimination in terms of matrices and in this way formulated LU decomposition, as demonstrated by his graphic illustration. His calculations follow ordinary matrix ones, yet notation deviates in that he preferred to ...
The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination. Among the eighteen problems listed in the Fang Cheng chapter, some are equivalent to simultaneous linear equations with two unknowns, some are equivalent to simultaneous linear equations with 3 unknowns, and the most complex example analyzes the solution to ...