enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Thus the name Gaussian elimination is only convenient abbreviation of a complex history. Banachiewicz [1] was the first to consider elimination in terms of matrices and in this way formulated LU decomposition, as demonstrated by his graphic illustration. His calculations follow ordinary matrix ones, yet notation deviates in that he preferred to ...

  4. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    This system has the exact solution of x 1 = 10.00 and x 2 = 1.000, but when the elimination algorithm and backwards substitution are performed using four-digit arithmetic, the small value of a 11 causes small round-off errors to be propagated. The algorithm without pivoting yields the approximation of x 1 ≈ 9873.3 and x 2 ≈ 4.

  5. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.

  6. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU factorization). The Jacobi and Gauss–Seidel methods for solving a linear system converge if the matrix is strictly (or irreducibly) diagonally dominant. Many matrices that arise in finite element methods are diagonally ...

  7. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.

  8. The Nine Chapters on the Mathematical Art - Wikipedia

    en.wikipedia.org/wiki/The_Nine_Chapters_on_the...

    The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination. Among the eighteen problems listed in the Fang Cheng chapter, some are equivalent to simultaneous linear equations with two unknowns, some are equivalent to simultaneous linear equations with 3 unknowns, and the most complex example analyzes the solution to ...

  9. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The standard algorithm for solving a system of linear equations is based on Gaussian elimination with some modifications. Firstly, it is essential to avoid division by small numbers, which may lead to inaccurate results. This can be done by reordering the equations if necessary, a process known as pivoting.