enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xv x dt, over time t is ⁠ 1 / 2 ⁠ x 2. The work is the product of the distance times the spring force, which is also dependent on distance; hence the x 2 result.

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. [39] Importantly, the acceleration is the same for all bodies, independently of their mass. This follows from combining Newton's second law of motion with his law of universal gravitation.

  5. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    Any movement of a positive charge into a region of higher potential requires external work to be done against the electric field, which is equal to the work that the electric field would do in moving that positive charge the same distance in the opposite direction. Similarly, it requires positive external work to transfer a negatively charged ...

  6. Virtual work - Wikipedia

    en.wikipedia.org/wiki/Virtual_work

    His idea was to convert a dynamical problem into static problem by introducing inertial force. [4] In 1768, Lagrange presented the virtual work principle in a more efficient form by introducing generalized coordinates and presented it as an alternative principle of mechanics by which all problems of equilibrium could be solved.

  7. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  8. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    Action at a distance also acts as a model explaining physical phenomena even in the presence of other models. Again in the case of gravity, hypothesizing an instantaneous force between masses allows the return time of comets to be predicted as well as predicting the existence of previously unknown planets, like Neptune.

  9. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest.