Search results
Results from the WOW.Com Content Network
Thus, the Haldane effect describes the ability of hemoglobin to carry increased amounts of carbon dioxide (CO 2) in the deoxygenated state as opposed to the oxygenated state. Vice versa, it is true that a high concentration of CO 2 facilitates dissociation of oxyhemoglobin, though this is the result of two distinct processes (Bohr effect and ...
The Haldane effect: most carbon dioxide is carried by the blood as bicarbonate, and deoxygenated hemoglobin promotes the production of bicarbonate. Increasing the amount of oxygen in the blood by administering supplemental oxygen reduces the amount of deoxygenated hemoglobin, and thus reduces the capacity of blood to carry carbon dioxide.
In the absence of oxygen, unbound hemoglobin molecules have a greater chance of becoming carbaminohemoglobin. The Haldane effect relates to the increased affinity of de-oxygenated hemoglobin for H +: offloading of oxygen to the tissues thus results in increased affinity of the hemoglobin for carbon dioxide, and H +
Haldane's decompression model is a mathematical model for decompression to sea level atmospheric pressure of divers breathing compressed air at ambient pressure that was proposed in 1908 by the Scottish physiologist, John Scott Haldane (2 May 1860 – 14/15 March 1936), [1] who was also famous for intrepid self-experimentation.
The opposite process occurs in the pulmonary capillaries of the lungs when the PO 2 rises and PCO 2 falls, and the Haldane effect occurs (release of CO 2 from hemoglobin during oxygenation). This releases hydrogen ions from hemoglobin, increases free H + concentration within RBCs, and shifts the equilibrium towards CO 2 and water formation from ...
Oxygen window – Physiological effect of oxygen metabolism on the total dissolved gas concentration in venous blood; Physiology of decompression – The physiological basis for decompression theory and practice; Decompression models: Bühlmann decompression algorithm – Mathematical model of tissue inert gas uptake and release with pressure ...
John Scott Haldane CH FRS [1] (/ ˈ h ɔː l d eɪ n /; 2 May 1860 – 14/15 March 1936) was a Scottish physician physiologist and philosopher famous for intrepid self-experimentation which led to many important discoveries about the human body and the nature of gases. [2]
The Bühlmann decompression model is a neo-Haldanian model which uses Haldane's or Schreiner's formula for inert gas uptake, a linear expression for tolerated inert gas pressure coupled with a simple parameterised expression for alveolar inert gas pressure and expressions for combining Nitrogen and Helium parameters to model the way inert gases enter and leave the human body as the ambient ...