enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory. An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

  3. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    where I is the moment of inertia of the beam cross-section and c is the distance of the top of the beam from the neutral axis (see beam theory for more details). For a beam of cross-sectional area a and height h , the ideal cross-section would have half the area at a distance ⁠ h / 2 ⁠ above the cross-section and the other half at a ...

  4. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition. Bending stiffness of a beam can analytically be derived from the equation of beam deflection when it is applied by a force.

  5. Moment-area theorem - Wikipedia

    en.wikipedia.org/wiki/Moment-Area_Theorem

    The following procedure provides a method that may be used to determine the displacement and slope at a point on the elastic curve of a beam using the moment-area theorem. Determine the reaction forces of a structure and draw the M/EI diagram of the structure.

  6. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied. By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.

  7. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  8. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Simple beam bending is often analyzed with the Euler–Bernoulli beam equation. The conditions for using simple bending theory are: [4] The beam is subject to pure bending. This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous.

  9. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The built-in beams shown in the figure below are statically indeterminate. To determine the stresses and deflections of such beams, the most direct method is to solve the Euler–Bernoulli beam equation with appropriate boundary conditions. But direct analytical solutions of the beam equation are possible only for the simplest cases.