Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
Using polynomial interpolation to find a coefficient in a source polynomial = using Lagrange polynomials is not efficient, since unused constants are calculated. Considering this, an optimized formula to use Lagrange polynomials to find f ( 0 ) {\displaystyle f(0)} is defined as follows:
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...
The simple Durand–Kerner and the slightly more complicated Aberth method simultaneously find all of the roots using only simple complex number arithmetic. Accelerated algorithms for multi-point evaluation and interpolation similar to the fast Fourier transform can help speed them up for large degrees of the polynomial.
One can use Lagrange polynomial interpolation to find an expression for this polynomial, = ) () + () ...