Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
MPSolve (Multiprecision Polynomial Solver) is a package for the approximation of the roots of a univariate polynomial. It uses the Aberth method, [1] combined with a careful use of multiprecision. [2] "Mpsolve takes advantage of sparsity, and has special hooks for polynomials that can be evaluated efficiently by straight-line programs" [3]
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
Polynomial filters for interior eigenvalues. SVD contains solvers for the singular value decomposition as well as the generalized singular value decomposition. Solvers based on the cross-product matrix or the cyclic matrix, that rely on EPS solvers. Specific solvers based on bidiagonalization such as Golub-Kahan-Lanczos and a thick-restarted ...
Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...
Given a set of n+1 data points (x i, y i) where no two x i are the same, the interpolating polynomial is the polynomial p of degree at most n with the property p(x i) = y i for all i = 0,...,n. This polynomial exists and it is unique. Neville's algorithm evaluates the polynomial at some point x.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial