enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Association rule learning - Wikipedia

    en.wikipedia.org/wiki/Association_rule_learning

    With the use of the Association rules, doctors can determine the conditional probability of an illness by comparing symptom relationships from past cases. [6] Downsides. However, Association rules also lead to many different downsides such as finding the appropriate parameter and threshold settings for the mining algorithm.

  3. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".

  4. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...

  5. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...

  6. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    Rule 1: A implies 0; Rule 2: B implies 1; because these are simply the most common patterns found in the data. A simple review of the above table should make these rules obvious. The support for Rule 1 is 3/7 because that is the number of items in the dataset in which the antecedent is A and the consequent 0. The support for Rule 2 is 2/7 ...

  7. Apriori algorithm - Wikipedia

    en.wikipedia.org/wiki/Apriori_algorithm

    Apriori [1] is an algorithm for frequent item set mining and association rule learning over relational databases.It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database.

  8. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The premier professional body in the field is the Association for Computing Machinery's (ACM) Special Interest Group (SIG) on Knowledge Discovery and Data Mining . [ 22 ] [ 23 ] Since 1989, this ACM SIG has hosted an annual international conference and published its proceedings, [ 24 ] and since 1999 it has published a biannual academic journal ...

  9. Contrast set learning - Wikipedia

    en.wikipedia.org/wiki/Contrast_set_learning

    Contrast set learning is a form of association rule learning. [2] Association rule learners typically offer rules linking attributes commonly occurring together in a training set (for instance, people who are enrolled in four-year programs and take a full course load tend to also live near campus).