enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35] This idea is further extended in generalized expectation maximization (GEM) algorithm, in which is sought only an increase in the objective function F for both the E step and M step as described in the As a maximizationmaximization procedure ...

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8] A silhouette close to 1 implies the datum is in an appropriate cluster, while a silhouette close to −1 ...

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  7. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    This training algorithm is an instance of the more general expectationmaximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step.

  8. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    Suppose there are just three possible hypotheses about the correct method of classification , and with posteriors 0.4, 0.3 and 0.3 respectively. Suppose given a new instance, x {\displaystyle x} , h 1 {\displaystyle h_{1}} classifies it as positive, whereas the other two classify it as negative.

  9. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA, (spike & slab) sparse coding). Such a scheme optimizes a lower bound of the data likelihood, which is usually computationally intractable, and in doing so requires the discovery of q-distributions, or variational posteriors .