Search results
Results from the WOW.Com Content Network
In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
For example, to round 1.25 to 2 significant figures: Round half away from zero rounds up to 1.3. This is the default rounding method implied in many disciplines [citation needed] if the required rounding method is not specified. Round half to even, which rounds to the nearest even number. With this method, 1.25 is rounded down to 1.2.
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46.
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
Place value of number in decimal system. The decimal numeral system (also called the base-ten positional numeral system and denary / ˈ d iː n ər i / [1] or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (decimal fractions) of the Hindu–Arabic numeral system.
Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": [1] Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers. Therefore, the result obtained may have little meaning if not totally erroneous.