enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Crystallographic restriction theorem - Wikipedia

    en.wikipedia.org/wiki/Crystallographic...

    Thus 5-fold rotational symmetry cannot be eliminated by an argument missing either of those assumptions. A Penrose tiling of the whole (infinite) plane can only have exact 5-fold rotational symmetry (of the whole tiling) about a single point, however, whereas the 4-fold and 6-fold lattices have infinitely many centres of rotational symmetry.

  3. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions.

  4. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals: implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its tiles ...

  5. Talk:Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Talk:Penrose_tiling

    There are certainly finitely many connected tilings given any finite number N of tiles, but there are uncountably many tilings of the plane, using the deflation argument. However, it is important to note that only two of the tilings possess five-fold rotational symmetry. This renders most of the statements about five-fold symmetry false.

  6. Alan Lindsay Mackay - Wikipedia

    en.wikipedia.org/wiki/Alan_Lindsay_Mackay

    He is a pioneer in the introduction of five-fold symmetry in materials and in 1981 predicted quasicrystals in a paper (in Russian) entitled "De Nive Quinquangula" [3] in which he used a Penrose tiling in two and three dimensions to predict a new kind of ordered structures not allowed by traditional crystallography.

  7. Fiveling - Wikipedia

    en.wikipedia.org/wiki/Fiveling

    A fiveling, also known as a decahedral nanoparticle, a multiply-twinned particle (MTP), a pentagonal nanoparticle, a pentatwin, or a five-fold twin is a type of twinned crystal that can exist at sizes ranging from nanometers to millimetres. It contains five different single crystals arranged around a common axis.

  8. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    The triskelion has 3-fold rotational symmetry. A geometric shape or object is symmetric if it can be divided into two or more identical pieces that are arranged in an organized fashion. [5] This means that an object is symmetric if there is a transformation that moves individual pieces of the object, but doesn't change the overall shape.

  9. Girih - Wikipedia

    en.wikipedia.org/wiki/Girih

    A periodic tiling of the plane is the regular repetition of a "unit cell", in the manner of a wallpaper, without any gaps. Such tilings can be seen as a two-dimensional crystal, and because of the crystallographic restriction theorem, the unit cell is restricted to a rotational symmetry of 2-fold, 3-fold, 4-fold, and 6-fold. It is therefore ...