Search results
Results from the WOW.Com Content Network
The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.
These algorithms have been used, for example, for perception in robotics to filter outliers from noisy data, stitch 3D point clouds together, segment relevant parts of a scene, extract keypoints and compute descriptors to recognize objects in the world based on their geometric appearance, and create surfaces from point clouds and visualize them.
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
3D Slicer (Slicer) is a free and open source software package for image analysis [1] [2] and scientific visualization. Slicer is used in a variety of medical applications, including autism , multiple sclerosis , systemic lupus erythematosus , prostate cancer , lung cancer , breast cancer , schizophrenia , orthopedic biomechanics , COPD ...
ITK stands for The Insight Segmentation and Registration Toolkit. The toolkit provides leading-edge segmentation and registration algorithms in two, three, and more dimensions. ITK uses the CMake build environment to manage the configuration process. The software is implemented in C++ and it is wrapped for Python.
ilastik [1] is a user-friendly free open source software for image classification and segmentation. No previous experience in image processing is required to run the software. Since 2018 ilastik is further developed and maintained by Anna Kreshuk's group at European Molecular Biology Laboratory.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.