Search results
Results from the WOW.Com Content Network
The plus sign (+) and the minus sign (−) are mathematical symbols used to denote positive and negative functions, respectively. In addition, + represents the operation of addition , which results in a sum , while − represents subtraction , resulting in a difference . [ 1 ]
The plus and minus symbols are used to show the sign of a number. In mathematics, the sign of a real number is its property of being either positive, negative, or 0.Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign.
1. Denotes addition and is read as plus; for example, 3 + 2. 2. Denotes that a number is positive and is read as plus. Redundant, but sometimes used for emphasizing that a number is positive, specially when other numbers in the context are or may be negative; for example, +2. 3.
The simplest conception of an integer is that it consists of an absolute value (which is a natural number) and a sign (generally either positive or negative). The integer zero is a special third case, being neither positive nor negative. The corresponding definition of addition must proceed by cases: For an integer n, let |n| be its absolute value.
The plus–minus sign or plus-or-minus sign (±) and the complementary minus-or-plus sign (∓) are symbols with broadly similar multiple meanings. In mathematics , the ± sign generally indicates a choice of exactly two possible values, one of which is obtained through addition and the other through subtraction .
the product of a negative number—al-nāqiṣ (loss)—by a positive number—al-zāʾid (gain)—is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative ...
The plus–minus sign, ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign. For example, y = x ± 1 represents the two equations y = x + 1 and y = x − 1. Sometimes, it is used for denoting a positive-or-negative term such as ±x.
This function equals the usual n th root for positive real radicands. For negative real radicands, and odd exponents, the principal n th root is not real, although the usual n th root is real. Analytic continuation shows that the principal n th root is the unique complex differentiable function that extends the usual n th root to the complex ...