Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.
The process of interpolation maps the function to a polynomial . This defines a mapping X {\displaystyle X} from the space C ([ a , b ]) of all continuous functions on [ a , b ] to itself. The map X is linear and it is a projection on the subspace Π n of polynomials of degree n or less.
Aitken interpolation is an algorithm used for polynomial interpolation that was derived by the mathematician Alexander Aitken. It is similar to Neville's algorithm . See also Aitken's delta-squared process or Aitken extrapolation .
The Chebyshev nodes are important in approximation theory because they form a particularly good set of nodes for polynomial interpolation. Given a function f on the interval [, +] and points ,, …,, in that interval, the interpolation polynomial is that unique polynomial of degree at most which has value () at each point .
A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.