Search results
Results from the WOW.Com Content Network
The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.
The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean .
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
The idea of the kernel average smoother is the following. For each data point X 0 , choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than λ {\displaystyle \lambda } to X 0 (the closer to X 0 points get higher weights).
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
In statistics, inverse-variance weighting is a method of aggregating two or more random variables to minimize the variance of the weighted average. Each random variable is weighted in inverse proportion to its variance (i.e., proportional to its precision). Given a sequence of independent observations y i with variances σ i 2, the inverse ...
A winsorized mean is a winsorized statistical measure of central tendency, much like the mean and median, and even more similar to the truncated mean.It involves the calculation of the mean after winsorizing — replacing given parts of a probability distribution or sample at the high and low end with the most extreme remaining values, [1] typically doing so for an equal amount of both ...
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]