enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]

  3. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Aspect ratio (aeronautics) – In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23]

  4. Wing configuration - Wikipedia

    en.wikipedia.org/wiki/Wing_configuration

    The aspect ratio is the span divided by the mean or average chord. [10] It is a measure of how long and slender the wing appears when seen from above or below. Low aspect ratio: short and stubby wing. Structurally efficient, high instantaneous roll rate, low supersonic drag.

  5. Canard (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Canard_(aeronautics)

    A Saab 37 Viggen, the first modern canard aircraft to go into production. In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane.

  6. Trapezoidal wing - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_wing

    Trapezoidal planform. In aeronautics, a trapezoidal wing is a straight-edged and tapered wing planform.It may have any aspect ratio and may or may not be swept. [1] [2] [3]The thin, unswept, short-span, low-aspect-ratio trapezoidal configuration offers some advantages for high-speed flight and has been used on a small number of aircraft types.

  7. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  8. Stall (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Stall_(fluid_dynamics)

    The relationship for an aircraft wing depends on the planform and its aspect ratio. The graph shows that the greatest amount of lift is produced as the critical angle of attack is reached (which in early-20th century aviation was called the "burble point").

  9. Leading-edge cuff - Wikipedia

    en.wikipedia.org/wiki/Leading-edge_cuff

    The case of high-wing configuration wing was different. Full scale testing of a modified Cessna 172 showed that the outboard leading-edge cuff alone was not sufficient to prevent a spin departure, the aircraft lacking directional stability at high angles of attack. With a ventral fin added, the aircraft entered a controlled spiral in lieu of a ...