enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a

  3. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling).

  4. 3-4-6-12 tiling - Wikipedia

    en.wikipedia.org/wiki/3-4-6-12_tiling

    It can be seen as a type of diminished rhombitrihexagonal tiling, with dodecagons replacing periodic sets of hexagons and surrounding squares and triangles.This is similar to the Johnson solid, a diminished rhombicosidodecahedron, which is a rhombicosidodecahedron with faces removed, leading to new decagonal faces.

  5. Polyhex (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Polyhex_(mathematics)

    One example self-tiling with a pentahex. All of the polyhexes with fewer than five hexagons can form at least one regular plane tiling. In addition, the plane tilings of the dihex and straight polyhexes are invariant under 180 degrees rotation or reflection parallel or perpendicular to the long axis of the dihex (order 2 rotational and order 4 reflection symmetry), and the hexagon tiling and ...

  6. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol {12} and can be constructed as a truncated hexagon, t{6}, or a twice-truncated triangle, tt{3}. The internal angle at each vertex of a regular dodecagon is 150°.

  7. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

  8. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The truncated icosahedron can be constructed from a regular icosahedron by cutting off all of its vertices, known as truncation.Each of the 12 vertices at the one-third mark of each edge creates 12 pentagonal faces and transforms the original 20 triangle faces into regular hexagons. [1]

  9. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.