Search results
Results from the WOW.Com Content Network
If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
Many common notions from mathematics (e.g. surjective, injective, free object, basis, finite representation, isomorphism) are definable purely in category theoretic terms (cf. monomorphism, epimorphism). Category theory has been suggested as a foundation for mathematics on par with set theory and type theory (cf. topos).
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets).
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. [1]For example, the binary function (,) = + has two arguments, and , in an ordered pair (,).
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.