enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    Some other quantifiers sometimes used in mathematics include: There are infinitely many elements such that... For all but finitely many elements... (sometimes expressed as "for almost all elements..."). There are uncountably many elements such that... For all but countably many elements... For all elements in a set of positive measure...

  3. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    In particular the logical depth of a graph is defined to be the minimum level of nesting of quantifiers (the quantifier rank) in a sentence defining the graph. [17] The sentence outlined above nests the quantifiers for all of its variables, so it has logical depth n + 1 {\displaystyle n+1} .

  4. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Bound variables within nested quantifiers are handled by increasing the subscript by one for each successive quantifier. This leads to rule 4, which must be applied after the other rules since rules 1 and 2 produce quantified variables.

  5. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    In this logic, quantifiers may only be nested to finite depths, as in first-order logic, but formulas may have finite or countably infinite conjunctions and disjunctions within them. Thus, for example, it is possible to say that an object is a whole number using a formula of L ω 1 , ω {\displaystyle L_{\omega _{1},\omega }} such as

  6. Method of analytic tableaux - Wikipedia

    en.wikipedia.org/wiki/Method_of_analytic_tableaux

    A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]

  7. Conditional quantifier - Wikipedia

    en.wikipedia.org/wiki/Conditional_quantifier

    For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...

  8. Predicate functor logic - Wikipedia

    en.wikipedia.org/wiki/Predicate_functor_logic

    Translate the matrices of the most deeply nested quantifiers into disjunctive normal form, consisting of disjuncts of conjuncts of terms, negating atomic terms as required. The resulting subformula contains only negation, conjunction, disjunction, and existential quantification.

  9. Higher-order logic - Wikipedia

    en.wikipedia.org/wiki/Higher-order_logic

    In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order ...