Search results
Results from the WOW.Com Content Network
Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. In economics , for example, consumer choice over a variety of goods, and producer choice over various inputs to use and outputs to produce, are modeled with multivariate ...
This is a list of multivariable calculus topics. See also multivariable calculus, vector calculus, list of real analysis topics, list of calculus topics. Closed and exact differential forms; Contact (mathematics) Contour integral; Contour line; Critical point (mathematics) Curl (mathematics) Current (mathematics) Curvature; Curvilinear ...
Multivariate (sometimes multivariable) calculus is the field of mathematics in which the results of differential and integral calculus are extended to contexts requiring the use of functions of several variables.
Calculus on Manifolds is a brief monograph on the theory of vector-valued functions of several real variables (f : R n →R m) and differentiable manifolds in Euclidean space. . In addition to extending the concepts of differentiation (including the inverse and implicit function theorems) and Riemann integration (including Fubini's theorem) to functions of several variables, the book treats ...
In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point. Functions of two variables
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.