enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]

  3. Data wrangling - Wikipedia

    en.wikipedia.org/wiki/Data_wrangling

    Raw data is typically unorganized and much of it may not be useful for the end product. This step is important for easier computation and analysis in the later steps. Cleaning There are many different forms of cleaning data, for example one form of cleaning data is catching dates formatted in a different way and another form is removing ...

  4. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Data preparation is the first step in data analytics projects and can include many discrete tasks such as loading data or data ingestion, data fusion, data cleaning, data augmentation, and data delivery. [2] The issues to be dealt with fall into two main categories:

  5. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...

  6. Extract, transform, load - Wikipedia

    en.wikipedia.org/wiki/Extract,_transform,_load

    Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.

  7. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Data preprocessing can refer to manipulation, filtration or augmentation of data before it is analyzed, [1] and is often an important step in the data mining process. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values , amongst other issues.

  8. Data validation - Wikipedia

    en.wikipedia.org/wiki/Data_validation

    Advisory actions typically allow data to be entered unchanged but sends a message to the source actor indicating those validation issues that were encountered. This is most suitable for non-interactive system, for systems where the change is not business critical, for cleansing steps of existing data and for verification steps of an entry process.

  9. Data sanitization - Wikipedia

    en.wikipedia.org/wiki/Data_sanitization

    Data sanitization is an integral step to privacy preserving data mining because private datasets need to be sanitized before they can be utilized by individuals or companies for analysis. The aim of privacy preserving data mining is to ensure that private information cannot be leaked or accessed by attackers and sensitive data is not traceable ...