Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version ... OR-AND-invert gates or OAI-gates are logic gates comprising OR gates followed by ... An example of a 3-1 OAI-gate is shown in ...
For each gate, a new variable representing its output is introduced. A small pre-calculated CNF expression that relates the inputs and outputs is appended (via the "and" operation) to the output expression. Note that inputs to these gates can be either the original literals or the introduced variables representing outputs of sub-gates.
A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device [1] (see ...
It is possible to create multi-level compound gates, which combine the logic of AND-OR-Invert gates with OR-AND-invert gates. [7] An example is shown below. The parts implementing the same logic have been put in boxes with the same color. compound logic gate for (CD + B) A, plus CMOS version.
However, the assignment of logical 1 and logical 0 to high or low is arbitrary and is reversed in active-low or negative logic, where low is logical 1 while high is logical 0. The following diode logic gates work in both active-high or active-low logic, however the logical function they implement is different depending on what voltage level is ...
See also: Diode logic § Active-high OR logic gate. The wired OR connection electrically performs the Boolean logic operation of an OR gate using open emitter or similar inputs (which can be identified by the ⎏ symbol in schematics) connected to a shared output with a pull-down resistor. This gate can also be easily extended with more inputs.
The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic – AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all of the inputs to the AND gate are HIGH, a LOW output results.
The number of inputs of the AND-gate is equal to the width of the adder. For a large width, this becomes impractical and leads to additional delays, because the AND-gate has to be built as a tree. A good width is achieved, when the sum-logic has the same depth like the n-input AND-gate and the multiplexer. 4 bit carry-skip adder.