Search results
Results from the WOW.Com Content Network
The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. [1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.
Nano-tetherball Sensor; Omnidirectional camera; Organoleptic sensors; ... Superconducting nanowire single-photon detector; Thin-film thickness monitor; Time-of-flight ...
Nanowire lasers can be grown site-selectively on Si/SOI wafers with conventional MBE techniques, allowing for pristine structural quality without defects. Nanowire lasers using the group-III nitride and ZnO materials systems have been demonstrated to emit in the visible and ultraviolet, however infrared at the 1.3–1.55 μm is important for telecommunication bands. [3]
Plasmonic nanolaser sensors have recently been demonstrated that can detect specific molecules in air and be used for optical biosensors. Molecules can modify the surface of metal nanoparticles and impact the surface recombination velocity of gain medium of a plasmonic nanolaser, which contributes to the sensing mechanism of plasmonic nanolasers.
Schematic of silicon nanowire. Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors.
Corn-like nanowire is a one-dimensional nanowire with interconnected nanoparticles on the surface, providing a large percentage of reactive facets. TiO 2 corn-like nanowires were first prepared by a surface modification concept using surface tension stress mechanism through a two consecutive hydrothermal operation, and showed an increase of 12% ...
Photon counting eliminates gain noise, where the proportionality constant between analog signal out and number of photons varies randomly. Thus, the excess noise factor of a photon-counting detector is unity, and the achievable signal-to-noise ratio for a fixed number of photons is generally higher than the same detector without photon counting.
Niobium nanowires in form oxide or nitride are used to detect single photons at low temperatures. The superconducting nanowire single-photon detector is an example of something made from these nano-structured materials. [1]