Search results
Results from the WOW.Com Content Network
1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan. 728 is the smallest number that can be expressed as sum of two cubes in two ways. 728= 6³+8³=(-1)³+9³
In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]
In mathematics, the Hardy–Ramanujan theorem, proved by Ramanujan and checked by Hardy [1] states that the normal order of the number () of distinct prime factors of a number is . Roughly speaking, this means that most numbers have about this number of distinct prime factors.
4104 (four thousand one hundred [and] four) is the natural number following 4103 and preceding 4105. It is the second positive integer which can be expressed as the sum of two positive cubes in two different ways. The first such number, 1729, is called the "Ramanujan–Hardy number".
Famously, in a discussion between the mathematicians G. H. Hardy and Srinivasa Ramanujan about interesting and uninteresting numbers, Hardy remarked that the number 1729 of the taxicab he had ridden seemed "rather a dull one", and Ramanujan immediately answered that it is interesting, being the smallest number that is the sum of two cubes in ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hardy–Ramanujan_number&oldid=1239437716"
Godfrey Harold Hardy FRS [1] (7 February 1877 – 1 December 1947) [2] was an English mathematician, known for his achievements in number theory and mathematical analysis. [ 3 ] [ 4 ] In biology , he is known for the Hardy–Weinberg principle , a basic principle of population genetics .
The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.