Search results
Results from the WOW.Com Content Network
Using the integral form of Gauss's Law, this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any man-scale artifact. The distances between planets and between the planets and the Sun are (by many orders of magnitude) larger than the sizes of the sun and the planets.
[1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being ...
It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:
The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.
The gravitational constant G is a key quantity in Newton's law of universal gravitation. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity.
The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about 43 km (27 mi) greater than its polar diameter, with a difference of about 1 ⁄ 298 of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of 1 metre (3.3 ft), that difference would be only 3 mm (0.12 in).