Search results
Results from the WOW.Com Content Network
Stimulus–response (S–R) compatibility is the degree to which a person's perception of the world is compatible with the required action. S–R compatibility has been described as the "naturalness" of the association between a stimulus and its response, such as a left-oriented stimulus requiring a response from the left side of the body.
[15] [16] Similarly, increasing the duration of a stimulus available in a reaction time task was found to produce slightly faster reaction times to visual [15] and auditory stimuli, [17] though these effects tend to be small and are largely consequent of the sensitivity to sensory receptors. [8]
The neuro-pathway and physical changes that underlie these improvements in vision remain a strong focus in research. Because of an infant's inability to verbally express their visual field, growing research in this field relies heavily on nonverbal cues including an infant's perceived ability to detect patterns and visual changes.
Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities (such as sight, sound, touch, smell, self-motion, and taste) may be integrated by the nervous system. [1]
Along with the visual ventral pathway being important for visual processing, there is also a ventral auditory pathway emerging from the primary auditory cortex. [20] In this pathway, phonemes are processed posteriorly to syllables and environmental sounds. [ 21 ]
For example, consider auditory spatial input. The location of an object can sometimes be determined solely on its sound, but the sensory input can easily be modified or altered, thus giving a less reliable spatial representation of the object. [19] Auditory information therefore is not spatially represented unlike visual stimuli.
Sensory information for computational maps comes from auditory and visual stimuli . Thus, any auditory or visual information that is constructed by neural computation, which is when the brain relates two or more bits of information in order to obtain some new information from them, can combine to change the already existing sensory map to ...
Iconic memory, for example, holds visual information for approximately 250 milliseconds. [7] The SM is made up of spatial or categorical stores of different kinds of information, each subject to different rates of information processing and decay. The visual sensory store has a relatively high capacity, with the ability to hold up to 12 items. [8]