Search results
Results from the WOW.Com Content Network
An example of a spontaneous (without addition of an external energy source) decomposition is that of hydrogen peroxide which slowly decomposes into water and oxygen (see video at right): 2 H 2 O 2 → 2 H 2 O + O 2. This reaction is one of the exceptions to the endothermic nature of decomposition reactions.
Hydrogen peroxide breaks down into oxygen and water. As a small amount of hydrogen peroxide generates a large volume of oxygen, the oxygen quickly pushes out of the container. [6] The soapy water traps the oxygen, creating bubbles, and turns into foam. [6] About 5-10 drops of food coloring could also be added before the catalyst to dramatize ...
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
Carbon dioxide density-pressure phase diagram. Figures 1 and 2 show two-dimensional projections of a phase diagram. In the pressure-temperature phase diagram (Fig. 1) the boiling curve separates the gas and liquid region and ends in the critical point, where the liquid and gas phases disappear to become a single supercritical phase.
The solution may be mixed before application or directly applied to the material, applying the sulfuric acid first, followed by the peroxide. Due to the self-decomposition of hydrogen peroxide, piranha solution should always be used freshly prepared (extemporaneous preparation).
Many industrial peroxides are produced using hydrogen peroxide. Reactions with aldehydes and ketones yield a series of compounds depending on conditions. Specific reactions include addition of hydrogen peroxide across the C=O double bond: R 2 C=O + H 2 O 2 → R 2 C(OH)OOH. In some cases, these hydroperoxides convert to give cyclic diperoxides:
The peroxide group is marked in blue. R, R 1 and R 2 mark hydrocarbon moieties. The most common peroxide is hydrogen peroxide (H 2 O 2), colloquially known simply as "peroxide". It is marketed as solutions in water at various concentrations. Many organic peroxides are known as well. In addition to hydrogen peroxide, some other major classes of ...
Especially when in concentrated form, organic peroxides can decompose by self-oxidation, since organic peroxides contain both an oxidizer (the O-O bond) and fuel (C-H and C-C bonds). A "self-accelerating decomposition" occurs when the rate of peroxide decomposition generates heat at a faster rate than it can be dissipated to the environment ...