enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Many anomaly detection techniques have been proposed in literature. [1] [20] The performance of methods usually depend on the data sets. For example, some may be suited to detecting local outliers, while others global, and methods have little systematic advantages over another when compared across many data sets.

  3. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    There is no rigid mathematical definition of what constitutes an outlier; determining whether or not an observation is an outlier is ultimately a subjective exercise. [7] There are various methods of outlier detection, some of which are treated as synonymous with novelty detection.

  4. Robust Regression and Outlier Detection - Wikipedia

    en.wikipedia.org/wiki/Robust_Regression_and...

    The sixth chapter concerns outlier detection, comparing methods for identifying data points as outliers based on robust statistics with other widely used methods, and the final chapter concerns higher-dimensional location problems as well as time series analysis and problems of fitting an ellipsoid or covariance matrix to data.

  5. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    Whilst in one or two dimensions outlier detection using classical methods can be performed manually, with large data sets and in high dimensions the problem of masking can make identification of many outliers impossible. Robust methods automatically detect these observations, offering a serious advantage over classical methods when outliers are ...

  6. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]

  7. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection [4] discusses the general pattern in various local outlier detection methods (including, e.g., LOF, a simplified version of LOF and LoOP) and abstracts from this into a general framework. This framework is then ...

  8. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    Grubbs's test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3]

  9. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Markov chain Monte Carlo methods Clustering is often utilized to locate and characterize extrema in the target distribution. Anomaly detection Anomalies/outliers are typically – be it explicitly or implicitly – defined with respect to clustering structure in data. Natural language processing Clustering can be used to resolve lexical ...