enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function. [3] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835, [ 4 ] and Augustus De Morgan used it in a textbook published in parts ...

  3. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    The method also has theoretical applications: for example, Peter Gustav Lejeune Dirichlet introduced the technique in 1849 to obtain the estimate [1] [2] = ⁡ + + (), where γ is the EulerMascheroni constant.

  4. Stieltjes constants - Wikipedia

    en.wikipedia.org/wiki/Stieltjes_constants

    The area of the blue region converges on the EulerMascheroni constant, which is the 0th Stieltjes constant. In mathematics , the Stieltjes constants are the numbers γ k {\displaystyle \gamma _{k}} that occur in the Laurent series expansion of the Riemann zeta function :

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/lifestyle/10-hard-math-problems-even...

    Meet the Euler-Mascheroni constant 𝛾, which is a lowercase Greek gamma. It’s a real number, approximately 0.5772, with a closed form that’s not terribly ugly; it looks like the image above.

  6. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + ⁡ (blue line) where is the EulerMascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    Euler's product formula for the gamma function, combined with the functional equation and an identity for the EulerMascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]

  8. Poussin proof - Wikipedia

    en.wikipedia.org/wiki/Poussin_proof

    where d represents the divisor function, and γ represents the Euler-Mascheroni constant. In 1898, Charles Jean de la Vallée-Poussin proved that if a large number n is divided by all the primes up to n, then the average fraction by which the quotient falls short of the next whole number is γ:

  9. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to ...