Search results
Results from the WOW.Com Content Network
The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
Within the cylinder is the cone whose apex is at the center of one base of the cylinder and whose base is the other base of the cylinder. By the Pythagorean theorem , the plane located y {\displaystyle y} units above the "equator" intersects the sphere in a circle of radius r 2 − y 2 {\textstyle {\sqrt {r^{2}-y^{2}}}} and area π ( r 2 − y ...
The condition of balance ensures that the volume of the cone plus the volume of the sphere is equal to the volume of the cylinder. The volume of the cylinder is the cross section area, times the height, which is 2, or . Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved ...
The bare term cylinder often refers to a solid cylinder with circular ends perpendicular to the axis, that is, a right circular cylinder, as shown in the figure. The cylindrical surface without the ends is called an open cylinder. The formulae for the surface area and the volume of a right circular cylinder have been known from early antiquity.
The spherinder can be seen as the volume between two parallel and equal solid 2-spheres (3-balls) in 4-dimensional space, here stereographically projected into 3D.. In four-dimensional geometry, the spherinder, or spherical cylinder or spherical prism, is a geometric object, defined as the Cartesian product of a 3-ball (or solid 2-sphere) of radius r 1 and a line segment of length 2r 2:
A volume is approximated by a collection of hollow cylinders. As the cylinder walls get thinner the approximation gets better. The limit of this approximation is the shell integral.
In the theory of analytic geometry for real three-dimensional space, the curve formed from the intersection between a sphere and a cylinder can be a circle, a point, the empty set, or a special type of curve.