Search results
Results from the WOW.Com Content Network
In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".
Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
Triangle DEF is the cevian triangle of P with reference to triangle ABC. Let the pairs of line (BC, EF), (CA, FD), (DE, AB) intersect at X, Y, Z respectively. By Desargues' theorem, the points X, Y, Z are collinear. The line of collinearity is the axis of perspectivity of triangle ABC and triangle DEF.
Thus, in Euclidean geometry three non-collinear points determine a circle (as the circumcircle of the triangle they define), but four points in general do not (they do so only for cyclic quadrilaterals), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by ...
A semipartial geometry is a partial geometry if and only if = (+) . It can be easily shown that the collinearity graph of such a geometry is strongly regular with parameters ( 1 + s ( t + 1 ) + s ( t + 1 ) t ( s − α + 1 ) / μ , s ( t + 1 ) , s − 1 + t ( α − 1 ) , μ ) {\displaystyle (1+s(t+1)+s(t+1)t(s-\alpha +1)/\mu ,s(t+1 ...
The "definition" of line in Euclid's Elements falls into this category. [1]: 95 Even in the case where a specific geometry is being considered (for example, Euclidean geometry), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.