enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  3. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...

  4. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.

  5. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are collinear.

  6. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    In 1847, von Staudt demonstrated that the algebraic structure is implicit in projective geometry, by creating an algebra based on construction of the projective harmonic conjugate, which he called a throw (German: Wurf): given three points on a line, the harmonic conjugate is a fourth point that makes the cross ratio equal to −1.

  7. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  8. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    Thus, in Euclidean geometry three non-collinear points determine a circle (as the circumcircle of the triangle they define), but four points in general do not (they do so only for cyclic quadrilaterals), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by ...

  9. Menger curvature - Wikipedia

    en.wikipedia.org/wiki/Menger_curvature

    If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0. Using the well-known formula relating the side lengths of a triangle to its area, it follows that