enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  3. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  4. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}

  5. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure πœƒ is =, and the formula for the area A of a circular sector of radius r and with central angle of measure πœƒ is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  8. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of dπœƒ at the centre of the circle), each with an area of ⁠ 1 / 2 ⁠ · r 2 · dπœƒ (derived from the expression for the area of a triangle: ⁠ 1 / 2 ⁠ · a · b · sinπœƒ ...

  9. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.