Search results
Results from the WOW.Com Content Network
Testing various clustering algorithms and analyzing their results to find a suitable match for our task (determining which modules are similar and possible candidates to be merged). Also contains a brief literature review of code similarity detection. List of possible candidates for improvement of clustering using better algorithms.
In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...
In this scenario, the similarity between the two baskets as measured by the Jaccard index would be 1/3, but the similarity becomes 0.998 using the SMC. In other contexts, where 0 and 1 carry equivalent information (symmetry), the SMC is a better measure of similarity.
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
Similarity learning is closely related to distance metric learning.Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality).
The resultant SSIM index is a decimal value between -1 and 1, where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation. For an image, it is typically calculated using a sliding Gaussian window of size 11x11 or a block window of size 8×8.
Clustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance.
In mathematics and computer science, graph edit distance (GED) is a measure of similarity (or dissimilarity) between two graphs. The concept of graph edit distance was first formalized mathematically by Alberto Sanfeliu and King-Sun Fu in 1983. [1]