Search results
Results from the WOW.Com Content Network
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
The classification based on the structural action is once again the same as that in conventional concrete. Examples of active and passive reinforcement in 3D printed concrete are reinforcement bars and post-tensioning cables used to prestress segmental elements, respectively. The majority of the reinforcement in concrete has conventionally been ...
Modern reinforced concrete can contain varied reinforcing materials made of steel, polymers or alternate composite material in conjunction with rebar or not. Reinforced concrete may also be permanently stressed (concrete in compression, reinforcement in tension), so as to improve the behavior of the final structure under working loads.
EN 1994-1-2 deals with the design of composite steel and concrete structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1994-1-1 and EN 1991-1-2. This part only identifies differences from, or supplements to, normal temperature design and deals only with passive methods of fire protection.
The Salginatobel Bridge is an example of this. Concrete cracks due to tensile stress induced by shrinkage or stresses occurring during setting or use. Various means are used to overcome this. Fiber reinforced concrete uses fine fibers distributed throughout the mix or larger metal or other reinforcement elements to limit the size and extent of ...
Single span rigid-frame bridges are typically made of reinforced concrete and are commonly used on parkways and other roadways. [4] This design is an efficient use of material as the cross section at mid-span is relatively narrow and the amount of concrete needed at the abutments is reduced. [4]
Conventionally the term concrete refers only to concrete that is reinforced with iron or steel. However, other materials are often used to reinforce concrete e.g. organic and inorganic fibres, composites in different forms. While compared to its compressive strength, concrete is weak in tension. Thus adding reinforcement increases the strength ...
Unlike an I-beam, a T-beam lacks a bottom flange, which carries savings in terms of materials, but at the loss of resistance to tensile forces. [5] T- beam designs come in many sizes, lengths and widths to suit where they are to be used (eg highway bridge, underground parking garage) and how they have to resist the tension, compression and shear stresses associated with beam bending in their ...