Search results
Results from the WOW.Com Content Network
The phenomenological equation which describes Harper–Dorn creep is = where ρ 0 is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s, and n is the stress exponent which varies between 1 and 3.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
Constitutive equations for the type of mechanism have been developed for each deformation mechanism and are used in the construction of the maps. The theoretical shear strength of the material is independent of temperature and located along the top of the map, with the regimes of plastic deformation mechanisms below it.
L. M. Kachanov [5] and Y. N. Rabotnov [6] suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω: ˙ = ˙ ˙ = ˙ where ˙ is the creep strain rate, ˙ is the creep-rate multiplier, is the applied stress, is the creep stress exponent of the material of interest, ˙ is the rate of damage accumulation, ˙ is the damage-rate multiplier, and is ...
Stress Intensity Equation. As the fibrils in the crack begin to rupture the crack will advance in either a stable, unstable or critical growth depending on the toughness of the material. To accurately determine the stability of a crack growth and R curve plot should be constructed. A unique tip of fracture mode is called stick/slip crack growth.
Creep is the tendency of a solid material to slowly move or deform permanently under constant stresses. Creep tests measure the strain response due to a constant stress as shown in Figure 3. The classical creep curve represents the evolution of strain as a function of time in a material subjected to uniaxial stress at a constant temperature.
Development of thermo mechanical constitutive equations for the mathematical description of the deformation behaviour of metals and rubber (theory and experiments). Professional results: 1953: Constitutive equations for creep and plasticity on the basis of a "fraction model". 1957: Two reaction theory for induction motors.