Search results
Results from the WOW.Com Content Network
Clockwise from top right: Amoeba proteus, Actinophrys sol, Acanthamoeba sp., Nuclearia thermophila., Euglypha acanthophora, neutrophil ingesting bacteria. An amoeba (/ ə ˈ m iː b ə /; less commonly spelled ameba or amœba; pl.: amoebas (less commonly, amebas) or amoebae (amebae) / ə ˈ m iː b i /), [1] often called an amoeboid, is a type of cell or unicellular organism with the ability ...
An amoeba of the genus Mayorella (Amoebozoa, Discosea) Amoebozoa is a large and diverse group, but certain features are common to many of its members. The amoebozoan cell is typically divided into a granular central mass, called endoplasm, and a clear outer layer, called ectoplasm. During locomotion, the endoplasm flows forwards and the ...
According to the source of their nutrients, they can be divided into autotrophs (producers) and heterotrophs (consumers). Autotrophic protists synthesize their own organic compounds from inorganic substrates. All autotrophic protists do this process as photosynthesis through chloroplasts, using light as the source of energy. [121]
Anatomy of an Amoeba. Species of Amoeba move and feed by extending temporary structures called pseudopodia. These are formed by the coordinated action of microfilaments within the cellular cytoplasm pushing out the plasma membrane which surrounds the cell. [11] In Amoeba, the pseudopodia are approximately tubular, and rounded at the ends ...
Examples range from the propulsion of single cells such as the swimming of spermatozoa to the transport of fluid along a stationary layer of cells such as in a respiratory tract. Though eukaryotic flagella and motile cilia are ultrastructurally identical, the beating pattern of the two organelles can be different.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Other organisms, called heterotrophs, take in autotrophs as food to carry out functions necessary for their life. Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need.
The individual cells in their independent phase are common on organic detritus or in damp soils and caves. In this phase they are amoebae. Typically, the amoebal cells grow separately and wander independently, feeding mainly on bacteria. However, they interact to form multi-cellular structures following starvation.