Search results
Results from the WOW.Com Content Network
The Elbs persulfate oxidation is the organic reaction of phenols with alkaline potassium persulfate to form para-diphenols. [1] The reaction is generally performed in water at room temperatures or below, using equimolar quantities of reagents. The Elbs persulfate oxidation. Several reviews have been published. [2] [3] [4]
Stephen aldehyde synthesis, a named reaction in chemistry, was invented by Henry Stephen (OBE/MBE).This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R-CN) using tin(II) chloride (SnCl 2), hydrochloric acid (HCl) and quenching the resulting iminium salt ([R-CH=NH 2] + Cl −) with water (H 2 O).
First performed by Justus von Liebig in 1838, [1] it is the first reported example of a rearrangement reaction. [2] It has become a classic reaction in organic synthesis and has been reviewed many times before. [3] [4] [5] It can be viewed as an intramolecular redox reaction, as one carbon center is oxidized while the other is reduced. Scheme 1.
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
Electron transfer reactions are central to myriad processes and properties in soils, and redox potential, quantified as Eh (platinum electrode potential relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and ...
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
The spontaneous redox reactions of a conventional battery produce electricity through the different reduction potentials of the cathode and anode in the electrolyte. However, electrolysis requires an external source of electrical energy to induce a chemical reaction, and this process takes place in a compartment called an electrolytic cell .
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis: