Search results
Results from the WOW.Com Content Network
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
Metals have a positive temperature coefficient of resistance; they have lower resistance when cold. Any electrical load that contains a substantial component of metallic resistive heating elements, such as an electric kiln or a bank of tungsten-filament incandescent bulbs, will draw a high current until the metallic element reaches operating ...
When the contact is very fine grained (VFG), the electrical conductivity is much higher than a normal piece of copper tungsten. [6] Copper tungsten is a good choice for a vacuum contact due to its low cost, resistance to arc erosion, good conductivity, and resistance to mechanical wear and contact welding.
Tungsten was discovered in 1781 by Swedish chemist Carl Wilhelm Scheele. Tungsten has the highest melting point of all metals, at 3,410 °C (6,170 °F). Filament of a 200 watt incandescent lightbulb highly magnified. Up to 22% Rhenium is alloyed with tungsten to improve its high temperature strength and corrosion resistance.
Tungsten steel is any steel that has tungsten as its alloying element with characteristics derived mostly from the presence of this element (as opposed to any other element in the alloy). Common alloys have between 2% and 18% tungsten by weight along with small amounts of molybdenum and vanadium which together create an alloy with exceptional ...
In practice the resistivity of a given sample is measured down to as cold as possible, which on typical laboratory instruments is in the range of 2 K, though much lower is possible. By this point the linear resistive behavior is usually no longer applicable and by the low temperature ρ is taken as a good approximation to 0 K.
The internal component of a round wire's inductance vs. the ratio of skin depth to radius. That component of the self inductance is reduced below μ/8 π as skin depth becomes small (as frequency increases). The ratio AC resistance to DC resistance of a round wire versus the ratio of the wire's radius to the skin depth.